Вскоре после рождения Габриэля семья Липпманов переехала во Францию.
До 13-летнего возраста обучался дома, в дальнейшем поступил в Лицей Наполеона в Париже.
В 1868 г. стал студентом Высшей нормальной школы в Париже. Здесь, в результате составления рефератов немецких статей для французского журнала «Анналы химии и физики ()», в нём пробудился активный интерес к работе с электрическими явлениями.
В 1873 году правительство профинансировало его командировку в Германию для изучения методов преподавания естественных наук. В Берлине он встречался с физиологом и физиком Германом фон Гельмгольцем. В Гейдельбергском университете Липпман работал совместно с физиологом Вильгельмом Кюне и физиком Густавом Кирхгофом.
Наибольшее значение для выбора направления исследований имел показанный Кюне опыт, в котором капля ртути, покрытая серной кислотой, деформировалась при лёгком прикосновении железной проволочки. Липпман сделал вывод, что два металла и серная кислота образуют электрическую батарею, и созданное ею напряжение изменяет форму поверхности ртути. Это и стало открытием электрокапиллярных явлений.
Проработав несколько лет в физических и химических лабораториях Германии, он в 1875 г. вернулся в Париж, где защитил замечательную диссертацию под заглавием «Relation entre les ph?nom?nes ?lectriques et capillaires». В 1878 он начал работать на факультете естественных наук Парижского университета. В 1883 г. Липпман был назначен преемником Брио (1817—1882) по кафедре теории вероятностей и математической физики. В 1886 г. он занял после Жамена кафедру экспериментальной физики в Сорбонне и был выбран в члены академии наук.
Изменение поверхностного натяжения ртути в зависимости от напряжённости электрического поля в позволило ему построить чрезвычайно чувствительный прибор, так называемый капиллярный электрометр. В наклонной капиллярной трубке столбик ртути реагирует на малую разность потенциалов значительным перемещением. Липпману удавалось измерить напряжения до 0,001 В.
Он изобрёл также электрокапиллярный двигатель для превращения электрической энергии в механическую работу и обратно, ртутный гальванометр, ртутный электродинамометр.
Ему удалось наблюдать образование разности электрических потенциалов при механической деформации ртутной поверхности. Это привело к важнейшему открытию — сформулированной и опубликованной в 1881 году теореме об обратимости физических явлений.
Эта теорема утверждает:
Применив свою теорему к пьезоэлектрическому эффекту, где электрическое напряжение возникает при сжатии или растяжении некоторых кристаллов, Липпман высказал гипотезу, что если к кристаллу приложить электрическое поле, то произойдёт изменение его размеров.
Пьер Кюри и его брат Жак провели эксперимент и подтвердили предположение Липпмана.
Ныне обратный пьезоэлектрический эффект широко применяется в технике наравне с прямым.
Липпман создал удобный метод для измерения сопротивления жидкостей и указал на два важных факта, касающихся прохождения электричества через электролиты: вода, заряженная положительно, при соприкосновении с отрицательным электродом содержит излишек водорода, который растворяется, лишь только внешняя электровозбудительная сила достигнет достаточной величины; точно так же вода, заряженная отрицательно, вокруг положительного электрода содержит излишек кислорода. Он указал новые способы для опытного определения «ома» и для измерения сопротивления в абсолютных единицах. Он первый осветил следствия принципа сохранения электрического заряда и применил их для рассмотрения задач теоретической электротехники.
Липпман разработал метод получения цветных изображений, базирующийся на явлении интерференции. Этот метод Липпман представил в 1891 г. во Французской академии наук и за него же получил в 1908 г. Нобелевскую премию по физике.
В 1888 году Липпман женился. В 1921 году умер на борту парохода «La France», возвращаясь из поездки в Канаду.
Кроме многочисленных статей в журналах «Journal de physique», «Annales de chimie et de physique» и в «Comptes rendus de l’Асаd?mie des sciences», Липпман напечатал весьма известный учебник по термодинамике («Cours de Thermodynamique profess? ? la Sorbonne» (Париж, 1886 и 1888 гг.)). Во Франции этот учебник стал одним из стандартных.
Работы Липпмана по фотографии в настоящее время не используются из-за технической сложности реализации предложенного им процесса. В то же время эти работы получили свое развитие при создании голографии. При записи так называемых объемных или трехмерных голограммы, они же голограммы Денисюка, используют аналогичный подход, но, в отличие от метода Липпмана, в них используется интерференция двух независимых волн (опорной и сигнальной).
И другие результаты Липпмана пользуются в настоящее время большим спросом. Например явления электрокапиллярности и электросмачивания привлекают в последнее время большое внимание в связи с развитием микрофлюидики. С помощью этих эффектов можно управлять движением мельчайших капелек жидкости по поверхности. Кроме биотехнических применений и массово изготавливаемых ныне струйных принтеров, эти эффекты можно использовать в дисплеях (т. н. электронной бумаге) и объективах с переключаемым фокусным расстоянием.